Chapter 2 part 7

Th 2.9 Let $n>1, a \in \mathbb{Z}$.
The equation $[a] \odot x=[1]$ has a solution iff $(a, n)=1$. in π_{n}
$a \in \mathbb{Z}_{\sim}$ is called $\frac{\text { unit }}{\nabla_{L_{n}}}$ if the equation $a x=1$ has a solution in $\nabla_{L_{n}}$
Th 2.10 $2 e t ~ n>1$ be an integer

$[a] \in \nabla_{n}$

If $(a, n)=1$, then $(b, n)=1$ for any b such that $[b]=[a]$.
Special case $n=p$ is a prime
Theorem 2.10 reads:
In π_{p} every nou-zero element is a unit.
$0=[0]$ - all integers divisible by P
$[1], \ldots,[p-1]$ - won-zero chasses; for any of them, $[r]$, we have $(x, p)=1$
because $0<r<p$, therefore $p x r$.
toquivalently, Th. 10 tells us that for any $a \in \mathbb{Z}_{p}, a \neq 0$, the equation $a x=1$ in \mathbb{Z}_{p} has a (unique) solution
Th 2.8 The following statements are equivalent:
(1) p is prime
(2) for any $a \neq 0$, the equation $a x=1$ Lis a solution in ∇_{p}
(3) $b c=0$ in \mathbb{Z}_{p} implies $b=0$ or $c=0$ (or both)

If (1) implies (2); (2) implies (3); (3) implies (1)
(1) implies (2) follows from Th 2.10 as above.
(2) implies (3)

Let $b c=0$. If $b \neq 0$, then b is a unit in \mathbb{Z}_{p}.
Therefore b has $a n$ inverse, a so that $a b=1$.

$$
\begin{array}{rlrl}
a b c & =0 & \text { in } \pi_{p} \\
l \cdot c & =0 & & \\
c & =0 & & \text { in } \pi_{p}
\end{array}
$$

(3) implies (1)

Toxavele ∇_{6} :

Counterpositive: if p is not a primer,
then (3) is not true in π_{p}
$p=b c$ as integers (in \mathbb{Z}) $\quad b<p, c<p$ implies $p \times b$ and $p x c$ (positive)
as congrusuce classes $\left(\operatorname{in} \nabla_{p}\right) \quad \frac{b \neq 0}{0}$ and $c \neq 0$.
while $\quad b c=p=0$ in Z_{ρ}

